Endfeet serve as diffusion-limited subcellular compartments in astrocytes.
نویسندگان
چکیده
Astrocytes extend their processes to make contact with neurons and blood vessels and regulate important processes associated with the physiology/pathophysiology of the brain. Their elaborate morphology, with numerous fine processes, could allow them to perform complex signal transductions with distinct compartments or to function as a spatial buffer depending on the diffusion properties of their intracellular molecules. Apart from calcium ions, however, the diffusion dynamics of molecules within astrocytes are poorly understood. In this study, we applied two-photon uncaging and fluorescence recovery after photobleaching of fluorescent molecules to acute cortical brain slices from mice to investigate the diffusion dynamics of molecules within astrocytes. We found that diffusion was significantly more restricted at the endfeet than at trunks and distal ends of other processes. Slow diffusion dynamics at the endfeet resulted in a large population of molecules being retained in a small region for tens of seconds, creating subcellular compartments that were isolated from other regions. In contrast, diffusion was fast and free at other processes. The same patterns were observed with the diffusions of a higher molecular weight (10 kDa) molecule and 2-NBDG, a fluorescent analog of glucose. These findings suggest that molecular diffusion is not uniform across the intracellular environment and that subcellular compartments are present in astrocytes. Therefore, similar to neurons, the elaborate and specialized structures of astrocytes may enable them to perform complex computations by providing distinct information storage/processing capacity among processes.
منابع مشابه
The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction.
The unravelling of the polarized distribution of AQP4 in perivascular astrocytic endfeet has revitalized the interest in the role of astrocytes in controlling water and ion exchange at the brain-blood interface. The importance of the endfeet is based on the premise that they constitute a complete coverage of the vessel wall. Despite a number of studies based on different microscopic techniques ...
متن کاملEvidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet
The dystrophin-dystroglycan complex (DDC) is a molecular array of proteins in muscle and brain cells. The central component of the DDC is dystroglycan, which comprises α- and β-subunits. α-Dystroglycan (α-DG) binds to extracellular matrix components such as agrin, whereas β-dystroglycan (β-DG) is a membrane-spanning protein linking α-DG to the cytoskeleton and other intracellular components suc...
متن کاملSubtle modulation of ongoing calcium dynamics in astrocytic microdomains by sensory inputs
Astrocytes communicate with neurons through their processes. In vitro experiments have demonstrated that astrocytic processes exhibit calcium activity both spontaneously and in response to external stimuli; however, it has not been fully determined whether and how astrocytic subcellular domains respond to sensory input in vivo. We visualized the calcium signals in astrocytes in the primary visu...
متن کاملL-DOPA Uptake in Astrocytic Endfeet Enwrapping Blood Vessels in Rat Brain
Astrocyte endfeet surround brain blood vessels and can play a role in the delivery of therapeutic drugs for Parkinson's disease. However, there is no previous evidence of the presence of LAT transporter for L-DOPA in brain astrocytes except in culture. Using systemic L-DOPA administration and a combination of patch clamp, histochemistry and confocal microscopy we found that L-DOPA is accumulate...
متن کاملImaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses
Intracellular Ca(2+) transients are considered a primary signal by which astrocytes interact with neurons and blood vessels. With existing commonly used methods, Ca(2+) has been studied only within astrocyte somata and thick branches, leaving the distal fine branchlets and endfeet that are most proximate to neuronal synapses and blood vessels largely unexplored. Here, using cytosolic and membra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2013